Reluctant vesicles contribute to the total readily releasable pool in glutamatergic hippocampal neurons.
نویسندگان
چکیده
The size of the readily releasable pool (RRP) of vesicles is critically important for determining the size of postsynaptic currents generated in response to action potentials. However, discrepancies in RRP estimates exist among methods designed to measure RRP size. In glutamatergic hippocampal neurons, we found that hypertonic sucrose application yielded RRP size estimates approximately fivefold larger than values obtained with high-frequency action potential trains commonly assumed to deplete the RRP. This discrepancy was specific for glutamatergic neurons, because no difference was found between sucrose and train estimates of RRP size in GABAergic neurons. A small component of the difference in excitatory neurons was accounted for by postsynaptic receptor saturation. Train estimates of vesicle pool size obtained using more stimuli revealed that action potential-elicited EPSCs did not truly reach a steady state during shorter trains, and RRP estimates were closer to sucrose estimates made in the same neurons. This suggested that reluctant vesicles may contribute to the total available pool. Two additional lines of evidence supported this hypothesis. First, RRP estimates from strongly depolarizing hyperkalemic solutions closely matched those obtained with sucrose. Second, when Ca2+ influx was enhanced during trains, train estimates of pool size matched those obtained with sucrose. These data suggest that glutamatergic hippocampal neurons maintain a heterogeneous population of vesicles that can be differentially released with varying Ca2+ influx, thereby increasing the range of potential synaptic responses.
منابع مشابه
Regulation of the Readily Releasable Vesicle Pool by Protein Kinase C
Modulation of the size of the readily releasable vesicle pool has recently come under scrutiny as a candidate for the regulation of synaptic strength. Using electrophysiological and optical measurement techniques, we show that phorbol esters increase the size of the readily releasable pool at glutamatergic hippocampal synapses in culture through a protein kinase C (PKC)-dependent mechanism. Pho...
متن کاملLack of synapsin I reduces the readily releasable pool of synaptic vesicles at central inhibitory synapses.
Synapsins (Syns) are synaptic vesicle (SV) phosphoproteins that play a role in neurotransmitter release and synaptic plasticity by acting at multiple steps of exocytosis. Mutation of SYN genes results in an epileptic phenotype in mouse and man suggesting a role of Syns in the control of network excitability. We have studied the effects of the genetic ablation of the SYN1 gene on inhibitory syna...
متن کاملSynaptic vesicle recycling studied in transgenic mice expressing synaptopHluorin.
Synaptic vesicles are recycled locally within presynaptic specializations. We examined how vesicles are reused after endocytosis, using transgenic mice expressing the genetically encoded fluorescent indicator synaptopHluorin in subsets of neurons. At both excitatory and inhibitory synapses in cultured hippocampal neurons, newly endocytosed vesicles did not preferentially enter the releasable po...
متن کاملA simple depletion model of the readily releasable pool of synaptic vesicles cannot account for paired-pulse depression.
Paired-pulse depression (PPD) is a form of short-term plasticity that plays a central role in processing of synaptic activity and is manifest as a decrease in the size of the response to the second of two closely timed stimuli. Despite mounting evidence to the contrary, PPD is still commonly thought to reflect depletion of the pool of synaptic vesicles available for release in response to the s...
متن کاملInverse relationship between release probability and readily releasable vesicles in depressing and facilitating synapses.
We tested the hypothesis that the probability of vesicular exocytosis at synapses is positively correlated with the pools of readily releasable synaptic vesicles, as shown for mammalian neurons grown in tissue culture. We compared synapses of two identified glutamatergic neurons: phasic (high-output, depressing) and tonic (low-output, facilitating) crustacean motor neurons, which differ 100- to...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The Journal of neuroscience : the official journal of the Society for Neuroscience
دوره 25 15 شماره
صفحات -
تاریخ انتشار 2005